
Advances in ELEGANT

Michael Borland, Yusong Wang, Hairong Shang

Accelerator Systems Division

Argonne National Laboratory

December 2, 2008

2

Introduction

 Essential goal of this work is to support LCLS commissioning, operation,
and optimization with fast, high-fidelity modeling tools

 Summary of ANL's tasks
– Finish parallelization of relevant parts of elegant, a trusted code for such

modeling
– Develop robust interfaces among suite of codes involved in FEL modeling

• IMPACT (gun and linac modeling)
• elegant (accelerator modeling and optimization)
• GENESIS and GINGER (FEL modeling)

– Develop integrated graphical user interface to provide on-demand, high-
fidelity modeling of data and experiments
• Selection of codes, algorithms, detail level
• Utilizes data drawn from the control system
• Utilizes high-performance computing resources

– Develop optimizer based on genetic algorithm to provide guidance on FEL
performance improvement.

3

Simulation of Microbunching Instability

 The microbunching instability in FEL driver linacs is an important design
and operation issue
– Instability is driven by longitudinal space charge, coherent synchrotron

radiation, and non-zero R56 of bunch compressors
 Primary goal of simulations is to determine the microbunching gain curve

– How much is an initial small density modulation amplified in passing through
the system, as a function of wavelength of the modulation?

 We used the FERMI@ELETTRA lattice for testing purposes due to its
availability and similarity to LCLS lattice
– Up-to-date LCLS lattice wasn't available in timely fashion

Figure from S. DiMitri et al., Proc. 2008 EPAC.

4

FERMI Microbunching Instability Simulated with elegant

BLS BC1 BC2

Tiny initial density modulations
build up in bunch compression
systems due to CSR and space
charge. Gain increases
to ~2000-fold down to 25 m
modulation.

M. Borland, Phys. Rev. ST AB 11,
030701 (2008).

5

Reliable Gain Curve Computation Requires Careful Modeling

 Considerations1,2:
– Optimization of initial modulation depth to avoid non-linearity
– Variation of number of particles to ensure convergence
– Low-pass filtering of particle distribution in computations to control noise growth
– Detection of modulation signal in output histograms using NAFF

 For 25 micron modulation in FERMI, need ~20MP, 3000 bins, 0.01% modulation
 Released version of Pelegant can handle up to 60 MP

– Improved memory management
1Z.. Huang et al., Phys. Rev. ST AB 7, 074401 (2004).
2M. Borland, Phys. Rev. ST AB 11, 030701 (2008).

6

Probing Shorter Wavelengths Important

 In LCLS commissioning1, evidence has been found of the microbunching
instability, apparently at optical wavelengths
– Has serious impact on LCLS diagnostics
– Need to push modeling into sub-micron wavelengths

 LCLS and other facilities propose2 a laser/undulator beam heater to
impose an energy modulation on the beam
– Predicted to suppress the microbunching instability
– Modulates beam energy at ~1 micron wavelength

 1 micron wavelength requires about 500 million particles
– Would like to push to 1.5 billion

 To do this requires two things
– Changing the architecture of parallel elegant
– Parallelizing SDDS-based I/O used by elegant

1K. Bane et al., Proc. PAC07, 807-809 (2007).
2Z. Huang et al., Phys. Rev. ST AB 7, 074401 (2004).

7

Architecture of Parallel elegant

 The original parallelization was an expedient approach
– Particle-based decomposition only
– Master performs all I/O
– Master performs particle generation
– Master may gather/scatter to perform serial operations, e.g.,

• Output
• Elements we didn't get around to parallelizing

 Benefits:
– Very useful parallel version in about six months
– Gradual parallelization of the code without impeding on-going

development
 Problem:

– Master was a memory and I/O bottleneck
– Limited to about 60M particles (16GB RAM)

 As a result we have reworked the parallelization to eliminate the central
role for the master processor
– Slaves perform I/O and particle generation
– Not limited to particle-based decomposition for tracking

 This required parallelizing the SDDS-based I/O used by elegant

8

Early Test Results with New Version
 With new version1, demonstrated

400 MP on 100 nodes
– Parallelized SDDS I/O
– Eliminated role of master node in

particle management
 Early tests (left) show SDDS I/O

performance is comparable to
HDF5
– Test was designed to favor HDF5
– Performed on Jazz using PVFS

1Y. Wang, H. Shang, M. Borland

9

Why Use SDDS I/O ?

 SDDS (Self Describing Data Sets) refers to
– A self-describing file protocol developed at ANL starting in 1994
– A set of general-purpose programs that work with SDDS files

• “SDDS Toolkit” for data analysis, manipulation, and display
• “SDDS/EPICS Toolkit” for control-system applications

 Advantages
– Provides generic pre- and post-processing tools for simulation codes
– Supports user scripting
– Makes writing/upgrading simulations easier

• No need to create/modify custom pre- or post-processors
– Improves robustness

• Programs can detect presence, data type, units of data
– Makes it easier to work with multiple codes

• Start-to-end simulation
 Features

– Highly portable: Linux/UNIX, Windows, OS-X
– ASCII or binary data storage option
– Users create custom data analysis methods using pipelines of SDDS tools
– Libraries support C/C++, FORTRAN, Java, MATLAB, Tcl, Python

10

What Codes Use SDDS I/O ?

 elegant is the most widely-used SDDS-compliant code
– SDDS is deeply engrained in how elegant is written and used

 shower is an interface to EGS4 for electron/gamma shower simulation
 spiffe is a 2.5 D PIC code for rf gun simulation
 We have SDDS-based scripts that convert to/from ASTRA and IMPACT-T

particle distributions and elegant distributions
 sddsanalyzebeam analyzes phase space output from elegant
 sddsmatchtwiss transforms phase space coordinates from elegant
 sddsbrightness and sddsurgent compute properties of synchrotron radiation

based on distributions from elegant
 clinchor computes single- and coupled-bunch growth rates due to HOMs
 haissinski computes potential well distortion
 csrImpedance computes shielded CSR impedance for use by elegant
 touschekLifetime computes Touschek lifetime using data from elegant
 URMEL/APS is an SDDS-compliant version of the URMEL code for cavity

mode computation (output accepted by elegant or clinchor)
 ABCI/APS provides SDDS wake data that elegant accepts
 MAFIA/APS provides SDDS data that (after post-processing) elegant accepts
 We have an SDDS-compliant version of the FEL code GENESIS
 Our goal is to never have to manually translate data between two codes

11

Recent Parallel SDDS I/O Tests on BlueGene

 ANL recently installed a 100 terraflop BlueGene/P
– Developer workshop held to give opportunity to port and test codes

with up to 1024 processors
– We took the opportunity to test and optimize SDDS I/O

 BlueGene/P uses IBM's General Parallel File System (GPFS)
 Tests are incomplete but performance is good

– With ~100 or more processors, getting >200 MB/s throughput
– Implies reading/writing 1B particle file in <5 minutes

12

Plans

 Further testing and debugging needed for parallel SDDS
 elegant is in constant development, so latest parallel version diverged from

official version
– Presently using other funds to merge with official version
– Expect completion within a few months

 Parallel SDDS I/O in column mode requires other applications to be
upgraded to SDDS3
– This work is in progress (other funding)

 SDDS Toolkit can benefit from multiprocessor machines
– Will parallelize selected applications using OpenMP (other funding)

 Perform production runs for LCLS with up to 500 MP to get gain curve
down to ~1 micron

 Develop IMPACT-T/elegant-based GUI application for LCLS modeling
– Ability to model experiments (e.g., scans) conveniently
– Intelligent segmenting of runs to improve performance
– Ability to display expected results at diagnostics
– Eventually take settings directly from control system

 Employ genetic optimizer to perform start-to-end optimization of LCLS,
including FEL modeling

